

QUÍMICA

Lucas Scalioni

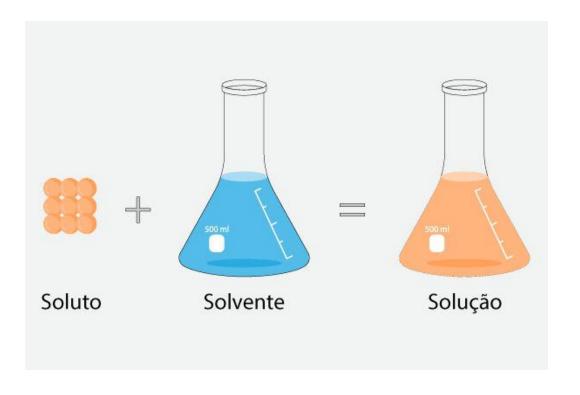
Soluções

Conceito de Solução

❖ O que é uma solução?

É uma **mistura homogênea** formada por **duas ou mais substâncias**. Visualmente, parece uma única fase (mesmo aspecto em toda a extensão).

Componentes:


- •Soluto → substância que está dissolvida (em menor quantidade).
- •Solvente → substância que dissolve o soluto (em maior quantidade).

O solvente universal é a água.

Exemplo:

Na solução de sal em água:

- •Soluto → NaCl (cloreto de sódio)
- •Solvente \rightarrow H₂O

Tipos de Soluções

Quanto ao estado físico

•Sólida: ligas metálicas (ex: ouro 18k, latão = Cu + Zn)

•Líquida: sal em água, álcool em água, etc.

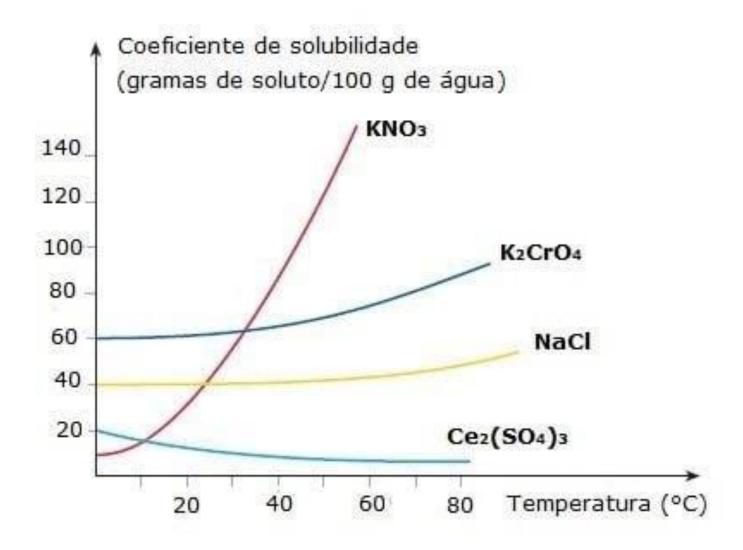
•Gasosa: ar atmosférico $(N_2 + O_2 + outros gases)$

Quanto à quantidade de soluto dissolvido

- •Solução diluída: pequena quantidade de soluto
- •Solução concentrada: grande quantidade de soluto
- •Solução saturada: contém o máximo de soluto que pode se dissolver a uma dada temperatura
- •Solução supersaturada: contém mais soluto do que o limite de solubilidade (instável)

Coeficiente de Solubilidade (Cs)

❖ Definição


É a **quantidade máxima de soluto** que pode ser dissolvida em **100 g de solvente**, a uma **determinada temperatura**.

Exemplo:

O Cs do NaCl é 36 g/100 g H₂O a 25 °C.

Isso significa que, a 25 °C, no máximo 36 g de sal podem se dissolver em 100 g de água. Se tentarmos dissolver 40 g, 4 g **permanecerão como corpo de fundo**.

Soluto	Solubilidade				
	O°C	10 °C	20 °C	30 °C	40 °C
${\rm AgNO}_{3(s)}$	122	170	222	300	376
$\text{Li}_2\text{CO}_{3(s)}$	1,54	1,52	1,33	1,25	1,17
$O_{2(g)}$	0,007	0,005	0,004	0,003	0,002

Fatores que influenciam a solubilidade:

Natureza do soluto e solvente

Solvente polar dissolve soluto polar (exemplo: açúcar na água).
Solvente apolar dissolve soluto apolar (exemplo: gasolina e querosene).
Substâncias com polaridades diferentes não se dissolvem ou se misturam de forma homogênea (exemplo: óleo na água).

Temperatura

Para **sólidos em líquidos**: solubilidade geralmente **aumenta com a temperatura**. Para **gases em líquidos**: solubilidade **diminui com a temperatura**.

Pressão

Importante apenas para **gases** (ex: refrigerantes \rightarrow CO₂ se mantém dissolvido sob pressão).

Unidades de Concentração

As unidades de concentração expressam a quantidade de solução ou solvente.

Concentração Comum (C)

A concentração comum é a razão entre a massa do soluto (m) e o volume da solução (V). É expressa em g/L.

Exemplo:

Dissolvendo 10 g de NaCl em 500 mL de solução:

$$C = 10/0,5L$$

$$C = 20 g/L$$

$$C_{m/V} = rac{m_{soluto}}{V_{solução}}$$

Molaridade (M)

A molaridade é a razão entre o número de mols do soluto (n) e o volume da solução em litros (V). É expressa em mol/L.

$$M = rac{ extstyle n^{ extstyle onde}}{ extstyle Volume} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad rac{ extstyle m}{ extstyle M}$$

Exemplo:

Dissolvendo 58,5 g de NaCl (M = 58,5 g/mol) em 1 L de solução:

$$n = 58,5g/58,5 g/mol$$
 $n = 1 mol$

$$M = 1 \text{mol/L}$$
 $M = 1 \text{mol/L}$

PECEP

Título (τ)

O título é a razão entre a massa do soluto (m_soluto) e a massa total da solução (m_solução). Pode ser expresso em porcentagem (τ%) ou em fração.

Porcentagem em Massa (%m/m)

É a porcentagem da massa do soluto em relação à massa total da solução.

Porcentagem em Volume (%v/v)

É a porcentagem do volume do soluto em relação ao volume total da solução.

$$\tau_v = \frac{\text{volume do soluto}}{\text{volume da solução}} \Rightarrow \tau_v = \frac{V_1}{V}$$

$$\text{massa do soluto}$$

$$m_1$$

$$\tau_m = \frac{\text{massa do soluto}}{\text{massa da solução}} \Rightarrow \tau_m = \frac{m_1}{m}$$